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Abstract

As the use of computer simulation grows in a variety of science and engineering fields,
the quality of random variate generators becomes increasingly important.
Unfortunately, a number of standard implementations are grossly inadequate and
exhibit poor statistical properties. This paper presents a software pattern for efficiently
implementing an extensible, high quality random variate generator.
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Random Variate Generator

Intent

Software patterns are a great way to share well trusted solutions to common
development problems [1]. This pattern solves the problem that many scientists and
engineers encounter when they use inadequate built in/library random number
generators that do not exhibit the required mathematical properties. Instead of
reflexively calling the included random number generation routine, developers who are
familiar with this pattern can often quickly code a much better generator. The two
objectives of this pattern are:

1. To provide a random number generator that efficiently produces samples that
are
a. Uniformly distributed
b. Independent from one another
2. Through the use of inheritance, to enable developers to change the random
number generating algorithm and random variate distribution.

NOTE: “A random variate is a variable generated from uniformly distributed
pseudorandom numbers. Depending on how they are generated, a random variate can
be uniformly or non-uniformly distributed. Random variates are frequently used as the
input to simulation models” [2].

Motivation

One of the most powerful uses of high performance computing is in the field of
modeling and simulation. Computers are being used to gain a deeper understanding
and even predictive power in problems ranging from traffic congestion to weather to
nuclear physics. Unfortunately, many scientists and engineers use substandard random
number generators to create random variates for their simulations.

As early at 1981, Knuth identified that the IBM SYSTEM/360 injected an algorithm into
industry that places an overemphasis on computational efficiency and reliance on the
SYSTEM/360 architecture, and no emphasis on statistical properties. This code relies on



an expected overflow in the 360 arithmetic unit. For decades, programmers have
blindly used this algorithm not knowing the underlying assumptions behind it [3].

This problem became apparent recently to the financial modeling community with the
tirst release of Microsoft Excel 2003 [4]. The RAND() function provided in Excel was
supposed to generate a number between 0 and 1. However, it produced a distribution
which included negative numbers as well. Additionally, those negative samples were
not distributed randomly by any definition. This bug had a huge impact on financial
institution that ran an Excel shop. The figure below was produced by generating
100,000 samples [5].
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Figure 1. Histogram from Excel 2003 RAND().



Of course, there are a variety of different techniques for random number generation and
certain specialists must consider the trade-offs among computational efficiency and
statistical properties of the generator under various use cases. However, Park and
Miller [6] point out that for most scientists and engineers:

convenient and frequent access to a verifiably good random number
generator is fundamentally important. If you have need for a random
number generator, particularly one that will port to a wide variety of
systems, and if you are not a specialist in random number generation and
do not want to become one, use the minimal standard [i.e. algorithm
provided in this article]. It should not be presumed that it is easy to write
a better one.

This pattern enables the typical user to implement the “minimal standard”
generator algorithm and then develop particular distributions, e.g. Poisson, as
well as supports the specialist who wants to switch generators depending on use
case.

Applicability

Because of the poor quality of random number generators in the past, no algorithms or
implementation should be blindly trusted. In just a few lines of code, any developer
can implement a prime modulus linear congruential generator with much better
statistical properties than other pre-packaged solutions. The author makes no claim
about the applicability of this solution to cryptographic applications. Special techniques
are employed for random numbers used in cryptography. The focus of this solution is
simulation modeling:

o Continuous stochastic simulation (e.g. heat flow problems)
o Discrete event stochastic simulation (e.g. queuing problems)



Structure

«uses»

RandomVar RandomNum

+getNextVar() : double #getNextNum() : double

A A

Exponential Geometric PMLCG MersenneTwister

The getNextVar() function is called in the program to get the next random variate in the
distribution.

Participants

RandomVar class is the abstract super class of the random variate generator. Subclasses
implement the particular distributions that may be desired, such as geometric or
exponential.

The Exponential and Geometric classes are example subclasses of RandomVar.

RandomNum class is the abstract super class of the random number generator.
Subclasses implement the particular algorithm, such as a prime modulus linear
congruential (PMLGC) or Mersenne Twister.

The PMLGC and MersenneTwister classes are example subclasses of RandomNum.
RandomVar

o The getNextVar function is called on an instance of this class to get the next
random variate in the sequence.



Exponential / Geometric

An instance of this class takes the uniform distribution generated by
RandomNum and performs the transformation to create a random variate.

RandomNum

A RandomVar object creates an instance of this class and calls the getNextNum
function to get the next random number from the uniform distribution.

PMLGC / MersenneTwister

An instance of this class creates a uniform distribution of random numbers.

Collaborations

RandomNum objects provide random numbers to RandomVar objects which
generate the desired distribution.

Consequences

1.

By separating the random number and random variate generation modules, new
random number generators can be experimented with and tested.

2. By implementing particular random number generation algorithms in subclasses,
the state-of-the-art algorithms can be added to an existing system without
changing any other modules.

3. By implementing the random variate generation in subclasses, developers can
very easily change distributions by creating another object for the desired
distribution.

Implementation
1. The Park and Miller algorithm is provided below for a PMLGC. It has a period

of m-1 and empirical studies indicate good statistical properties. Most
simulations can use this algorithm to implement random numbers. A C++
implementation of the algorithm is provided in the next section. For information
on the theory behind this algorithm , see [6].



2. If a greater period length is necessary, e.g. 25, Combined PMLCG can be
employed. This extension is portable and simple to implement, but not fast. See
page 186 in Volume 2 of [3] for more information. However, for simulations that
require a “super astronomical” number of random numbers, the Mersenne
Twister may be used. It has a period of 2% — 1 and 623-dimensional
independence. With 32-bit accuracy, only 624 words are necessary. For more
information on the theory and implementation of this algorithm, see [7].

3. Geometric random variates are generated by taking the U ~ U(0,1) and returning
floor(In U / In (1-p)).

4. Exponential random variates are generated by taking the U ~ U(0,1) and
returning —pInU where f is the mean.

5. For details on implementing other probability distribution functions, see [8].

Sample Code and Usage

//Park and Miller Algorithm (1988) for PMLCG

int m =2147483647; // 231 - 1
int a=48271;

int q = floor(m/a);

intr=m % a;

int Z = 456;

for (int i = 0; i <numSamples; i++)
{
gli] = a*(Z[i] % q) - r * floor(Z[il/q);
if g[i] >=0
Z[i+1] = g[i];
else
Z[i+1] = g[i] + m;
Z[i+1] = Z[i+1]/m; //scale to 0 > 1

/[END



Known Uses

Some of the ideas contained in this pattern are used in object oriented simulation
packages as well as custom simulation projects. Its structured programming analog is
even more common. This pattern shares the spirit of the Gang of Four Strategy pattern.
The intent of the Strategy pattern is to “define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets the algorithm vary independently
from clients that use it.” [9]
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