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I.  Introduction 

Background 
The US Department of Homeland Security has commissioned the University of 
Illinois to build a discrete event simulation system to simulate a terrorist cyber 
attack on the nation’s critical infrastructure. Financial, power, and telecom 
institutions, both public and private, will participate in a week long “war game” 
to exercise their systems and command ability. One question that will be 
answered by this system is how US banks will respond if they are cut off from 
the Federal Reserve.  

The high level goal of RINSE is to develop a large-scale real-time network 
simulation system that is highly extensible. Because of the number of players and 
duration of the game, hardware redundancy and other fault protection 
techniques are employed.  

A variety of novel techniques are employed in implementing RINSE. These 
include multi-resolution traffic modeling, new routing simulation methods, and 
a latency absorption technique. 

High Level System Description 
There are a variety of methodologies available for modeling computer networks, 
ranging from analytic tools to hardware emulation to simulation. Simulation has 
the advantage of offering scalability and flexibility. Obviously, in a security 
scenario like cyber attacks, it is preferable to attack a simulated network rather 
than a real one.  

RINSE has a variety of capabilities. Some capabilities which are common to other 
systems in this domain area are parallel execution, discrete event models, and 
real-time support. RINSE is different from similar systems in its employment of 
multi-resolution traffic models. These models facilitate human/machine real-time 
interaction as well as increase efficiency for various attack schemes.  

RINSE can be divided into five major modules: 

1) iSSFNet network simulator 
2) Simulator Database Manager 
3) SQL Database 
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4) Data Server 
5) Network Viewer (clients) 

iSSFNet Network Simulator 
iSSFNet, formerly called DaSSFNet is a robust network simulator. It relies on the 
common API for parallel simulation of networks, the Scalable Simulation 
Framework (SSF). The iSSF kernel, which in many ways follows the standard 
kernel pattern  handles support functions and synchronization for iSSFNet.  

A summary of important classes is provided in a later section. 

iSSFNet currently runs on the NCSA cluster. These parallel machines allow large 
networks to be simulated in real-time. Distributed execution is supported by a 
composite synchronous/asynchronous conservative synchronization mechanism. 

Simulator Database Manager 
The database management system connects directly to each machine in the 
simulator. It transmits data from iSSFNet to the SQL database as well as control 
signals from the database to the simulator. 

Data Server 
Client applications such as Network Viewer interact with the simulation through 
this component. The Data Server provides monitoring and control capabilities to 
system administrators playing the game. It also supports authentication for 
users, enables Network Viewer to access recent changes to the database via XML-
based remote procedure calls, and transmits DML information about client 
networks. 

Network Viewer 
This Java based client application enables users to view their network during a 
scenario. When Network Viewer polls the Data Server for data, the Data Server 
reads the database and returns the requested information. "Super users" exist 
which manage the game and view the client activity. They can use Network 
Viewer in addition to their special tool set which enables them to inject surprises 
into the game. 

A command prompt is also provided in Network Viewer which supports five 
types of commands. 
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1. Attack - Super users initiate denial of service attacks with this command. 
The DDoS scenario discussed later is an example.  

2. Defense - System administrators may filter packets and employ other 
techniques to protect their network.  

3. Device Control - System administrators may reboot or disable network 
devices such as routers.  

4. Diagnostics - System administrators may assess their network health.  

5. Simulator Data - Super users may control the simulator output or monitor 
a specific element of the networks in the game.  

Relevant Research 
Much research has been conducted documenting the common themes and 
architectural patterns within simulation modeling software. We used this 
research as a foundation to know what to look for and what to expect in the 
RINSE architecture.  

As [4] explains, most of the patterns used are structure-oriented, allowing "the 
ability and desire to create flexible and reusable classes" within the problem 
space.  

In [7] the authors explain that organizations often face the same problems when 
designing their simulations. Because of this, static process models can function as 
templates, later being molded into actual process descriptions. Architectural 
patterns can help, such as "how to model or implement typical situations, e.g. 
how to handle resources, defects, etc." To achieve reuse, the authors suggest 
modularizing not only the code base, but also the models.  

[5] describes an interesting distinction between "static" and "dynamic" model 
elements. Static elements do not change as the simulation executes, while 
dynamic elements have the potential to change. Dynamic input parameters are 
received by the simulation at runtime from the sources involved in the 
simulation.  
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II.  Architectural Business Cycle (ABC) 

Architect(s)

Architecture
Module Structure
Component-Connector Structure
Deployment Structure
Implementation Structure

Architects Influences

Stakeholders
US Department of Homeland Security
University of Illinois Coordinate Science Laboratory
Dartmouth College Institute for Security
Technology Studies
CS 527 Architectural Documentation Team

Developing Organization
Coordinated Science Laboratory, UIUC

Technical Environment
Discrete event simulation
High performance computing
Networking
Security

Architect’s Experience
Academic
Industrial

Requirements
(Qualities)
Performance
Fault Tolerance
Security

System
RINSE

 

Stakeholders 
RINSE is a continuation of projects funded by Defense Advanced Research 
Projects Agency (DARPA) and the National Science Foundation (NSF). It is 
currently sponsored by the US Department of Homeland Security.  

The principal development organization is the University of Illinois Coordinate 
Science Laboratory. The Dartmouth College Institute for Security Technology 
Studies is also contributing.  

The CS 527 Architectural Documentation Team is a stakeholder as well. 

Development Organization 
The Coordinated Science Laboratory (CSL) team is led by Professor David Nicol. 
Dr. Nicol holds the following appointments at the University:  

•  Professor, Department of Electrical and Computer Engineering  

•  Affiliate Professor, Department of Computer Science  
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•  Research Professor, Coordinated Science Laboratory  

•  Chair of the Computer Engineering Group, ECE department 

His research interests lie in the following areas: 

•  High Performance Computing  

•  Modeling and Simulation of Large-Scale Systems  

•  Networks  

•  Cyber-security  

Professor Nicol is assisted by Dr. Michael Liljenstam, Post-Doctoral Research 
Associate in the Center for Reliable and High-Performance Computing. Dr 
Liljenstam's areas of expertise are multi-resolution network modeling and 
simulation, cybersecurity: modeling internet worms, and inter-domain routing 
analysis.  

Dr. Jason (Xiaowen) Liu, Assistant Professor at the Colorado School of Mines, 
authored the iSSF kernel while a UIUC graduate student. Graduate student 
Yougu Yuan architected the framework of iSSFNet based on his experience on 
other SSF implementations, including the precursor DaSSFNet. His focus was on 
making it more extensible to enable large-scale network simulation. Graduate 
student Chris Grier, a security expert, is assisting with the development of the 
client side (JAVA) software. Research Programmer Lara Karbiner, a new member 
of the team, came onboard to help regulate the development and testing. 

Technical Environment 
The RINSE development team is comprised of experts in the area of discrete 
event simulation. Additionally, the UIUC team enjoys expertise in high 
performance computing, networking, security, and wireless systems. The 
Dartmouth ISTS group has expertise in security. They are developing the models 
and scenarios for various attacks. 

Architects Experience 
Professor Nicol's experience: 

•  1975-1979 Carleton College , BA (math)  

•  1979-1982 Control Data Corporation, programmer/analyst  

•  1982-1985 Univ. of Virginia, MS, PhD (computer science)  
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•  1985-1987 ICASE, Staff Scientist  

•  1987-1996 William and Mary, Assoc. Professor of CS  

•  1996-2003 Dartmouth, Professor of CS and Chair  

•  2002-2003 Assoc. Director ISTS  

•  2003-2003 Director ISTS  

•  2003-present UIUC, Professor of ECE  

Professor Nicol's vast experience in network simulation provides the "grand 
vision" for RINSE. He is assisted in this regard by Dr. Liljenstam, an expert in 
multi-resolution network modeling and simulation, cybersecurity: modeling 
internet worms, and interdomain routing analysis. Mr. Yuan architected RINSE 
based on his experience with earlier SSFNet systems. He started out developing 
some packages of the Java SSFNet. While working on a related project, two other 
students began developing a C++ implementation of SSFNet. The C++ 
implementation grew in size and complexity and eventually became DaSSFNet. 
However, the DaSSFNet APIs lacked extensibility for the new features they 
hoped to include. As a result, iSSFNet was built from scratch using the lessons 
learned from DaSSFNet and other past experiences. 
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III.  Architectural Information 

Distributed Denial of Service Attack 
The following informal use case is intended to give an engineer trying to learn 
the RINSE system an understanding of the important classes and their 
interaction in a particular scenario corresponding to a well known problem. 

DDoS, or a distributed denial of service attack is a growing problem for large 
scale networks, including the internet.  In a DDoS attack, the attacker seeks to 
disable a server victim through the exploitation of a computer network.  First, the 
attacker identifies a vulnerable server which becomes its agent.  An example of an 
agent could be an instant messaging server that has the IP addresses of a large 
number of machines and can easily pass packets to these machines.  The attack 
occurs when the attacker signals the agent to command all its connected machines, 
or zombies, to bombard the server victim with junk traffic.  The volume of traffic is 
so large that the server victim can no longer provide its services, whether it is 
POP3 email services or B2B e-commerce. 
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DDoS is one of the many scenarios that RINSE hopes to educated system 
administrators about and prepare their networks against.  The following 
command starts the simulation: 

 
ddos_attack attacker server 100 2000 

 

ddos_attack – the command 
attacker – the attacker mentioned above 
server – the server victim mentioned above 
100 – duration of attack in seconds 
2000 – rate of bombardment in kilobits/second 
 

The simulation begins when the client sends the command (DDosCmd) and it 
makes its way to the simulator.  It goes through the following classes: 

ViewerClient  DataServer  DBMonitor  WebServer 

Finally, the command reaches the CmdProxy class and is broadcast to all the 
physical simulators.  There is one Country class associated with each physical 
simulator.  Each Country contains a ResolutionService class which tells the 
CmdProxy the location of the attacker, or it’s Province.  Every Country is made 
up of a connected graph of Province objects. 

 

CmdProxy Province

ResolutionService

 
 

The command is then passed to CmdHandler which communicates with the 
AuxiliaryOracle and receives a pointer to the attacker within the attacker 
Province.  The Host contains at least one NIC and a protocol graph.  The protocol 
graph contains ProtocolSessions.  The ProtocolSession class represents a protocol 
layer on the ISO/OSI protocol stack. It's the base class for Protocol 
implementations. The class specifies default mechanisms for how a protocol 
session should behave. The data path is specified by two methods, push and pop, 
for receiving data from the protocol session above and below. The data 
exchanged between protocol layers are encapsulated in a ProtocolMessage object. 
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The exchange of control messages between adjacent protocol layers is 
implemented through invocations to the control method. Subclasses may 
override these methods with specific behavior.  ProtocolSessions include DDoS, 
TCP, ICMP, IP, and others. 

 
 

Packets are then generated with the following format and sent to the zombies. 

 
The zombies then assault the server victim with the DDoS payload. 

While the game is running, clients will periodically poll the database to analyze 
how their network is performing.  Each Province has a ReportManager which 
reports relevant statistics such as bandwidth usage and processor utilization.  
Although most information is polled periodically, some major events will alert 
the client through an event-driven interrupt.  Because of the enormous amount of 
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data that will be collected after a week long war game with hundreds of clients, 
the database cannot store all the information that should be analyzed in the post 
game stage.  Therefore, a large log file will be created to report the results. 

Important Classes 

Net 
The Net class loads the configuration and instantiates the entire model . It reads 
in the parameters from the passed-in DML branch and configures the hosts, 
routers, and links. After the configuration, it then goes through the links and 
connects all the interfaces. Links for subnets are also connected at this point. 
Once the configuration is finished, it then initializes the traffic, nets, links, hosts 
and router objects. 

Host 
The Host class is derived from the ProtocolGraph class and includes support for 
the IP layer and Network Interface Card (NIC) . It instantiates its own timer 
object that is used at the time of rebooting. In order to register itself, the Host 
object gets a pointer to the AuxiliaryOracle object via the Province object. It then 
configures the resources of CPU and memory. For example, it configures the 
number of instructions that a CPU would need for handling a packet. After 
configuring the resources, it then configures the protocol sessions and interfaces. 

Interface 
The Interface class implements the default mac layer. It registers itself with the 
host-entity and initializes all the protocol sessions. As part of its initialization of 
the given protocol session, it finds out the class name for this protocol session, 
creates a new protocol session object, makes it part of the protocol graph, and 
puts the protocol object in its vector. In case there are no protocol sessions 
specified for an interface, it would then use the default protocol sessions at both 
MAC and Physical layer. 
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Link 
The Link class is responsible for resolving the NHI addresses and connecting the 
NIC to other NICs on the same link  This connection is performed before the 
actual IP addresses have been assigned to the interfaces. 

Monitoring Possibilities 

Cisco NetFlow Format 
NetFlow data enables extensive near real time network monitoring capabilities. 
Flow-based analysis techniques may be utilized to visualize traffic patterns 
associated with individual routers and switches as well as on a network-wide 
basis (providing aggregate traffic or application based views) to provide 
proactive problem detection, efficient troubleshooting, and rapid problem 
resolution.  

TCP Dump Format 
It provides support for dumps of packet data in tcpdump format. The 
Instrumentation class is used to monitor the internal state of one TCP session at 
one end of the connection and to write data to a dumpfile.  

Domain Modeling Language 
DML is a language used to describe networks to be simulated in RINSE. 
Networks are described as combinations (layers) of other networks or as a 
collection of devices such as routers, switches, hosts, etc. Network administrators 
can describe their network topology using this language and submit the DML to 
the RINSE team for integration into the game. Time permitting, the team may be 
developing a GUI tool which generates DML code.  

DML is similar to XML in that it has a simple syntax consisting of nested name-
value pairs. In addition, DML has features that allow nodes within the hierarchy 
to act as pointers to other nodes in the hierarchy. For example, using the 
keyword "_extends", many nodes can point to one common node.  

To construct a Network in RINSE, DML is used as follows:  
#====================== 
# Network model 
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#====================== 
Net [ 
  # support interaction 
  support_interaction true 
 
  # for pseudo dns  
  dns_entry [ name alpha.aaa.com   nhi 2 ] 
  dns_entry [ name beta.ccc.edu  nhi 0:0 ] 
 
  # subnet 0 
  Net [ 
    id 0 
    _extends .dict.basicNet    # use the entry in the dictionary 
  ] 
 
  # hosts in this level of Net 
  host [ 
    id 2 
    # get the graph data from the dictionary section 
    graph [ _extends .dict.host_graph ] 
    interface [ id 0 _extends .dict.iface ] 
  ] 
 
  # links in this level of Net   
  link [ attach 2(0) attach 0:0(0) delay 0.2 ] 
] 

 

For more information on DML, visit: 
http://www.ssfnet.org/SSFdocs/dmlReference.html 
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IV.  Architectural Views 
As Bass, et. all, explain, views are probably the best way to convey a software’s 
architecture. Views capture a structure, and “documenting an architecture is a 
matter of documenting the relevant views.” [9] In essence, through graphical and 
annotative descriptions, views provide cross-sections into the  fundamentals of 
the software’s architecture. 

Logical view  

NETWORK-LEVEL CLASSES 
iSSFNet tries to only leak minimum of simulation details and present the normal 
users basic units to build a network. The following classes should be 
conceptually familiar to most network researchers: 

Net 
This class represents a network. It is composed of some smaller nets (subnets), 
hosts/routers, and links. 

Host 

 
http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/vhost.gif 

 
Both hosts and routers are represented by this class. Each host is a ProtocolGraph 
with one or more Interfaces. 

Protocol Graph 
Each protocol graph is composed of several ProtocolSessions such as IP, ICMP, 
etc. 
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Interface 
This is the representation of a network interface card. It contains MAC layer and 
physical layer protocol sessions. 

ProtocolSession 
Each protocol session is a model of one particular protocol, e.g. TCP, IP, ICMP, 
etc. 

Link 
This represents a physical link that connects multiple network interface cards. 

ProtocolMessage 
Each protocol implements its own protocol header. It should be an extension of 
this base class. 

Packet 
This is the smallest data unit that is sent over a link. Usually it is composed by 
several ProtocolMessages, just the same as in the real life. 

SIMULATION-LEVEL CLASSES 

 
http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/infrastructure.gif 

 
As a simulator, classes other than the network-level ones are needed to glue 
them together and provide essential simulated environment information. The 
main classes that accomplish this task are as follows: 
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Country 
This is literally the main controller of the simulation. It instantiates HostEntities 
for each physical machine that runs the simulation, instantiates 
ResolutionService that resolves global information such as NHI to ip address 
mapping. 

Province 

 
http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/province.gif 

 
Province is a container of hosts/routers. In iSSFNet design, it is equivalent to 
timeline or alignment if the users are more familiar with the other terms. Each 
simulation may has one or more Province instances. Each of them runs in its own 
timeline, which means in any given moment, the simulated clock in different 
HostEntities won't necessarily be the same. A Province sits in the background 
and provides services such as current (simulated) time to the hosts inside, it also 
provides means to distribute packets to hosts/routers in the other Province 
instances. Moreover, it processes/distributes external user command received by 
the CmdProxy to allow user interactions with a host, an interface, or a protocol 
session in the simulator. 

ResolutionService 
Hosts or routers or a protocol session sometime needs to know some information 
that is only available globally. For example, an interface may wants to get its own 
MAC/IP address assigned given its NHI address, the user may want to know 
which Province contains a specific host, given the host name, etc. such 
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information is provided by the resolution service. In many cases, a host may 
query such information indirectly using the AuxiliaryOracle. 

AuxiliaryOracle 
Each Province has its own AuxiliaryOracle. It can forward the queries on global 
information to the ResolutionService, and it also provides local detail 
information within this Province. For example, given a host NHI address, it can 
return the host pointer. The local information can only be obtained by hosts or 
other objects within this Province. 

CmdProxy 
It opens sockets and process user commands, distribute the commands to the 
appropriate Province, which further distribute the commands to Host, then to 
Interface or ProtocolSession. The results of the commands go back using a similar 
path and are sent out by the CmdProxy. With some change in the MACRO 
(remove -DUSE_CMD_SOCKET in the Makefile), it should be able receive input 
from the keyboard instead of the socket. 

Module View 

SSF VIEW 

 

Entity 
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Entity serves as the base class for all simulation components – such as hosts, 
routers, links, and TCP sessions. It provides a container mechanism for defining 
alignment relations among a model's pieces. All such co-aligned entities interact 
through event exchange on channels which is taken into account by the 
underlying simulator at the time of  mapping these entities to the corresponding 
processors. 

Event 

Event is the base class for the quantum of information flowing over channels – 
such as the protocol packets and timers. 

Process 

Process is the base class for describing an entity's behavior – such as the run-time 
behavior of protocols. Each instance of a process is associated with an entity. This 
instance may wait for input arriving on inchannels or wait for time to elapse. In 
addition, it may also wait on channels of entities co-aligned with its owner. 

inChannel, outChannel 

These classes serve as the communication endpoints for event exchange – such as 
the protocol interaction. Each instance of these classes belongs to a specific entity. 
They provide multicase in-out and bus-style channel mappings. However, the 
outchannels have a transmission delay associated with them. 

LAYERED VIEW 

 
 

The DML layer is responsible for the network configuration. It is a framework in 
itself that understands the configuration file semantics and its structure. Thus, it 
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essentially acts as a data source for the network models to be simulated. In a 
network environment, only the central server needs to host this configuration 
file. All the clients simply then retrieve their network model data from this one 
location. 

The SSFNet layer serves as the core layer that knows what objects to instantiate 
at what point based on the data from the above-mentioned DML layer. It is 
responsible for the simulation of domain internetworking that is accomplished  
via the important classes mentioned later in this document. 

The SSF layer resides at the bottom of this layered architecture providing a 
generic simulation framework that is applicable for almost all sorts of simulation. 
It provides some fundamental objects from which specific simulations (such as 
ISSF Net itself) need to derive classes to implement their corresponding 
functionalities. 

Component/Connector view 

MAIN VIEW  
The following sequence diagram shows the interaction of objects at the time the 
main method gets called during the load up of ISSF Net. At the time of startup, 
data is retrieved via the dmlConfig object. From this point on, the core objects of 
Country and Net use this pointer back to this dml configuration file to instantiate 
themselves and their corresponding objects:  
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NET VIEW 
The Net object is solely responsible for loading the whole network model and the 
associated objects as depicted below. This loading requires the creation of the 
necessary network-support objects of routers, interfaces, and links:  
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NETWORK VIEWER/DATASERVER CONNECTOR VIEW 

 
The DataServer calls StartListening() and StartDBMonitoring() during 
initialization. At this point, the DataServer is ready for Clients to connect. Clients 
then call StartListening() to begin listening for messages from the server, then 
attach themselves to the DataServer via AttachClient(). The Dataserver keeps 
track of all connected Clients, and as needed calls UpdateClient() on each Client 
via RPC, passing whatever data needs to be sent. 
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Deployment View 
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Within the iSSFNet Simulator Node (lower level):   
 

 

Implementation View 
This view provides information about the structure and contents of important 
source code folders. 

ATTACK 
All the classes for the simulation of the DDoS attack scenario reside in this folder:  
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The DDoSSession class is the core class that is responsible for initialization and 
configuration of the protocol session. It sets up the simulation timer and sets up 
protocol message and command objects.  

The DDoSMessage and DDoSCmd classes work with the DDoSSession class to 
communicate the commands for attack and report. 

AUXILIARY 
This folder contains the core classes of country, default auxiliary oracle, and 
resolution service:  

The Country class instantiates the province, resolution service and command 
proxy objects. It is also responsible for performing the pre and post configuration 
tasks.  

The DefaultAuxOracle class registers all the hosts and interfaces. It also sets up 
the in and out channels via which all the communication for a province occurs. 

FLUID 
This folder contains classes for handling fluid traffic at different network layers 
of IP and MAC. The FluidHdrMessage object specifies a basic implementation of 
fluid transport protocol message whereas the FluidAgentInPHY object defines a 
module at the physical layer to handle fluid related stuff. Similarly, the 
FluidAgentInMAC object handles the fluid traffic at the MAC layer. The 
FluidAgentInFilter object is responsible for processing an incoming packet. In 
case, it is a fluid dataflow event, its resource utilization would need to be taken 
care of as well to get around the fluid traffic loss. This would happen in case of 
CPU resource contention where the submission rate for packets to the upper 
layers would be shrinked. 

INTERACT 
This folder contains various kinds of classes responsible for handling different 
kinds of commands - such as ping, ftp, shutdown, report and so on so forth. The 
CmdProxy object makes sure that all the in and out channels have been 
established. All the tasks of reading and writing a command message get 
handled in this object. The CmdHandler object deals with the province and 
auxiliary oracle to process the event queue containing command messages. 
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NET FOLDER 
This folder contains the core SSFNet classes for modeling and simulation of 
network elements of hosts, routers, network interfaces, and links. The 
configuration of arbitrarily complex network topologies is also performed by the 
classes residing in this folder. For example, one of the crucial task of this 
configuration involves the generation of traffic. In order to do this, the 
framework utilizes the statistical algorithms for internet traffic - such as the 
poisson and poisson pareto burst process algorithms. 

OS 
This folder contains the core SSFNet classes for modeling and simulation of 
network protocols, protocol messages, and operating system components. The 
Dijkstra class contains the implementation of the Dijkstra's famous shortest path 
algorithm. Support for internet class addresses has been provided via the 
Internet_Protocol class that implements the basic functionality of the IPV4 
addressing scheme. The protocol of policy aware on demand routing has been 
utilized by the PAO_Routing class that helps the routers in deciding how to 
route the network traffic. 

SOSPF 
Provides classes which together implement a model of the Open Shortest Path 
First version 2 protocol (limited static version). The Open Shortest Path First 
(OSPF) protocol is an IP link-state routing protocol, recommended for 
distributing routing information among the routers in a single autonomous 
system (AS), with explicit support for classless inter-domain routing (CIDR) 
address allocation. 
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V.  Quality Attributes 

Performance 

 
Performance is one of the most important quality attributes in the RINSE 
application. As stated earlier, previous SSF simulators existed with many of the 
same features as iSSFNet. However, these versions could not provide the 
performance necessary to simulate hundreds of large scale networks for many 
days. The RINSE team utilized a variety of architectural patterns and other novel 
tactics to achieve high performance.  

Bass, et. all, suggest that "the goal of performance tactics is to generate a response 
to an event arriving at the system within some time constraint." [9] This 
definition is very applicable to the iSSFNet system, a real time discrete event 
simulator. When events occur, they either execute normally or are delayed and 
latency is adversely effected. The intelligent use of hardware and software 
resources seeks to increase the amount of time in which events can be handled 
normally and minimize "blocked time." Resource availability hindered by failure 
or contention for resources can be fatal problems when many events hit a 
particular resource near simultaneously.  

The aforementioned problems can be dealt with looking at solutions in three 
categories: Resource Demand, Resource Arbitration, and Resource Management. 
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RESOURCE DEMAND 
The RINSE architecture regulates event frequency as well as the resource 
consumption of individual events. This is accomplished through the use of 
algorithms and data structures which support computational efficiency. 
Additionally, an effort is made to reduce computational overhead through 
asynchronous parallel processing. Obviously, execution times and queue sizes 
are well bounded to prevent overruns.  

Simulating the mechanics of network traffic routing is a non-trivial activity. 
Brute force implementations of routing information with n nodes requires O(n^2) 
of memory. RINSE uses a novel hierarchical addressing scheme (BGP) which 
only stores IP prefixes. This policy based routing model permits on demand 
computation of routes. With the use of route aggregation, preloaded, pre-
computed forwarding tables can compute routes for background traffic and 
other flows as required.  

RESOURCE MANAGEMENT 
Resource Management can be achieved by introducing concurrency, maintaining 
multiple copies of data, and increasing available resources. RINSE uses all of 
these techniques to manage resources. "Maintaining multiple copies of data is 
implemented" to defend against a cyber attack against the war. In the event that 
a hacker disables all or part of the RINSE network, a backup network at another 
location will receive the current state of the mainline system and continue the 
game. Increasing resources and concurrency are linked tactics. RINSE achieves 
them by employing high performance RISC processors with large distributed 
memories in the NCSA super computing cluster. Currently, the simulator runs 
on a cluster with over 1000 processors.  

RINSE has also overcome some serious parallelization challenges. Normally, a 
global clock object would exist to synchronize the various machines working in 
parallel. Currently, RINSE runs on approximately 1500 processors! If a processor 
finishes its designated operation before other collaborating processors, it must 
wait. This is clearly inefficient and undesirable. RINSE has successfully 
implemented a scheme which involves local timers which run subsystems 
asynchronously. If this were done "brute force," it would be much harder, 
perhaps impossible, to implement clever algorithms that simplify matrix math 
for example. However, the RINSE team has successfully implemented their 
asynchronous system. The details of the implementation are beyond the scope of 
this documentation and likely not relevant to the reader.  
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RESOURCE ARBITRATION 
Scheduling is the result of conflicts over system resources.  The architecture of 
RINSE employs a variety of scheduling strategies to efficiently share resources.    
First, FIFO queues are used throughout the system, notably in the model for 
network interface cards.  FIFO queues have the advantage of handling all 
resource request equally, scheduling events in order.  Also, when there are 
multiple priority queues, such as within one single queue, a FIFO policy is used.  

Fixed priority scheduling is also utilized in RINSE.  For example, when the 
SSFNet kernel is handling an interaction or emulation task, current events are 
constrained by deadlines.  In the situation handling incoming events, some 
events need to be processed and incorporated into the simulation immediately.  
Current work focuses on expanding the kernel to permit differentiation between 
lower priority tasks, such as background traffic computation, and higher priority 
tasks.  Deadline monatomic strategies are also used in situations such as in 
emulation mode.  When a “real” packet is converted to a “virtual” packet, a 
deadline time is imposed for delivery.  Upon arrival at the simulated network 
card, the FIFO strategy can be violated to allow the packet to take its place in the 
queue such that its deadline is not compromised. 

TRADITIONAL PATTERNS 

Layers Pattern 
The Layers pattern describes the situation where logical decompisitions each 
perform a subset of the total work, continuously passing responsibility down the 
chain until the operation is completed. [2] This pattern provides many benefits, 
including keeping dependencies local to the individual layers, and this can be 
seen within the RINSE architecture.  

RINSE employs a series of ProtocolSession layers, each representing a protocol 
layer in the ISO/OSI protocol stack. When a ProtocolMessage is created, each 
ProtocolSession performs whatever work it needs to, then calls 
ProtocolSession::push(msg) to push the message down to the ProtocolSession in 
the next layer. When the message reaches the bottom and all work is performed, 
each ProtocolSession can call ProtocolSession::pop(msg) to alert the 
ProtocolSession in the layer above that the message has been processed by the 
lower layer and should be bubbled back up. 

Proxy Pattern 
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The intent of the proxy pattern is to “provide a surrogate or placeholder for another 
object to control access to it."  [3]  

 

 
from the DaSSF User’s Manual 

 
The RINSE applies the solution found in the Proxy Pattern through the use of 
distributed memory.  Large multiprocessor architectures cannot be implemented 
with the traditional single bus design.  Bandwidth constraints limit the number 
of connected processors.  In a distributed memory configuration, each processor 
has its own cache which has its own associated memory.  However, the 
memories are connected through a network. 

CUSTOM/FUTURE PATTERNS 
By definition, a software design pattern is a time tested solution to a recurring 
design problem. As a result of the research which developed iSSFNet, a variety 
of new solutions to recurring problems in the network simulation domain have 
been developed. Strictly speaking, these are not patterns yet because they have 
not had time to gain industrial approval. However, these "patterns" are 
documented here in the spirit of sharing the knowledge. 

Continuations Pattern 
Summary: The Continuations Pattern is a new pattern developed to provide an 
efficient way to save state information and reduce latency in network simulation.  

Context: You are developing a discrete event simulation. 

Problem: How do you model a delay in the system and advance simulation time 
without losing state information? 
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Background: 

 

Suppose you have a graph of your network topology. The network is composed 
of devices with well defined interfaces. At time X in the simulation, a packet is 
injected into the network. At any point in time, it occupies a specific position in 
the graph. Now the simulation time must advanced to time X + delta T to 
accommodate another event, perhaps an additional packet. However, if nothing 
is done, the current packet and the network state that was affected by it will be 
lost. 

Solution: The solution to this problem is to define a continuation object. The 
purpose of this object is to store state information. Many times, the continuation 
object can just save a copy of the packet. One should also define a Timer object 
contains a member variable which specifies how long of a delay should be 
modeled and encapsulates the continuation object. 

Multiresolution Modeling Pattern 
Summary: The Multiresolution Modeling Pattern is the principle technique 
which allows real time simulation of large possible. The fundamental concept is 
to be able to simulate network activity at different levels of detail depending on 
the particular needs of the particular scenario. This enables execution time to be 
reduced by two orders of magnitude.  

Context: (a) You are developing a discrete event simulation, or (b) You want to 
model a variety of different situations, each requiring a different level of 
granularity. 

Problem: How much should the process being simulated be discretized? Large 
granularity is useless for some scenarios, while fine granularity is unnecessary 
for others and computationally expensive. 
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Background: Suppose you are developing a simulator of computer networks. 
Depending on the type of attack or defense that a simulating network is exposed 
to, different resolutions of traffic modeling may be necessary. These vary from 
tracking at the individual packet level to observing aggregate flows between sub-
networks. 

Solution: The solution to this problem is to adjust the level of detail with which 
traffic is simulated:  

"Traffic that is 'in focus,' what we call foreground traffic is simulated 
with high fidelity at packet level detail. Traffic that represents 'other 
things' going on in the network, i.e. background traffic, is abstracted 
using fluid modeling, either fine grained per-flow models, or coarse 
time-scale periodic fixed point solutions.  

Fluid modeling of network traffic is a technique with some history, 
and is being explored also in other network simulators, such as 
MAYA, IP-TN, and HDCF-NS/pdns. The models used in iSSFNet are 
based on our previous work to develop discrete-event fluid modeling 
of TCP and hybrid traffic interaction models such that the packet and 
fluid representations can coexist in the same simulation." [10] 

 
Multiresolution traffic modeling provides for speedups two orders of magnitude. 
This speedup facilitates the simulation of very large networks.  

Intuitively, the multiresolution configuration can be viewed like this: 

Level 1: Model individual packets - Discrete 
Level 2: Raise level of abstraction and look at traffic as a fluid - Continuous 
Level 3: Raise the level of abstraction again and look at aggregate communication 
between sub-networks. 

Each level reveals different information about the network under evaluation. 
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Flexibility/Extensibility 

 
RINSE was designed with flexibility, extensibility, and scalability in mind. The 
architecture needed to be intellectually accessible for new developers so that it 
could be improved in a straightforward manner. It also needed to be able to scale 
to run on large hardware platforms, such as over 1000 clustered high 
performance machines. 

In addition to the implementation of patterns, other techniques were employed 
to achieve this quality attribute. First, the APIs were redesigned from DaSSFNet 
to be friendlier to new developers. Imposing additional structure does create 
more overhead, but the benefits outweigh the small performance hit. Other 
changes improved performance though, such as reducing the number of SSF 
channels. There is also additional support for emulation. Real time interaction is 
facilitated by enabling interaction with the outside world. Despite all these 
changes from the earlier SSF application, iSSFNet maintains backwards 
compatibility with old DML network models still work.  

Bass, et. all, describe general tactics for modifiability. RINSE utilizes the 
"maintain semantic coherence," anticipate expected changes," and "limit possible 
options" tactics to achieve modifiability. "Semantic coherence refers to the 
relationships among responsibilities in a module....The tactic of anticipating 
expected changes does not concern itself with coherence of a modules 
responsibilities but rather minimizes the effects of the changes." [9] In many 
ways, the SSF class of systems can be seen as a product line architecture. 
"Modifications, especially within a product line, may be far ranging and hence 
affect many modules. Restricting the possible options will reduce the effect of 
these modifications." [9] 
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TRADITIONAL PATTERNS 

Command Pattern 
The GoF Command Pattern shows how to separate a request from its execution, 
such that you "encapsulate a request as an object, thereby allowing you to 
parameterize clients with different requests, queue or log requests, and support 
undoable operations." [3] RINSE uses this approach to implement the commands 
which clients input with the Network Viewer client and send through the entire 
RINSE architecture. See the DDoS scenario in Section III to see how a command 
object flows through the system.  

In SSFNet, a DDOSCommand object contains the parameters for a request (the 
DDOS attack source and destination addresses and the number of seconds 
between attacks), and the realization of these requests occurs as the simulator 
creates DDOSMessages using the parameters specified in the DDOSCommand 
object. 

Strategy Pattern 
The GoF strategy pattern's intent is to "define a family of algorithms, encapsulate 
each one, and make them interchangeable. Strategy lets the algorithm vary 
independently from clients that use it." [3]  

 
In the example illustrated above as well as in many other instances, subclasses 
implement various strategies for a super class. 

Templates Pattern 
The intent of the Gang of Four (GoF) template pattern is to "define the skeleton of 
an algorithm in an operation, deferring some steps to subclasses. Template 
Method lets subclasses redefine certain steps of an algorithm without changing 
the algorithm's structure." [3] This pattern is used in iSSFNet through the 
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employment of the standard template library iterators. These iterators are used 
for example to iterate over nodes of topology objects. 

WholePart Pattern 
The Whole-Part pattern explains how to separate units into aggregate 
components [2], and the inherent aggregation of a network fits this perfectly. We 
have the Net class, which represents a network, containing Hosts, which are 
computers on the network, containing Interfaces, which represent the network 
interfaces within a computer. Also note that the Net class can consist of child Net 
classes (subnets), each with their own Hosts with their own Interfaces. 

CUSTOM/FUTURE PATTERNS 

Fractal Design Pattern 
Note: This pattern gets its name from fractals found in mathematics because they 
are defined by SELF SIMILARITY. 

Summary: By structuring the simulation objects in a way similar to the real 
world objects under investigation, domain experts can easily learn how the 
simulation works and extend it if they wish.  

Context: (a) You are developing a discrete event simulation, or (b) Other 
software engineers who understand the class of systems that is being simulated 
but not simulation techniques must modify or interact with your simulation. 

Problem: How do you efficiently organize the simulation so the engineers 
mentioned above can quickly learn the system? 

Background: Suppose you are developing a simulator of computer networks. 
You want computer network experts to interact with your system and develop 
models to enhance it. The network experts know nothing about discrete event 
simulation. 

Solution: The solution to this problem is to structure your simulation software 
similar to the structure of the system you are modeling. The classes in your 
simulation should be named after the objects they are simulating. Therefore, if 
you understand the internet and computer networks, you can understand the 
network simulation software. This concept is an extension of the paradigm 
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behind object oriented program which states that classes should be named after 
the real world objects they control. 

Subclass Creation Pattern 

Summary: The RINSE designers have implemented an unusual process by which 
subclasses such as Command, Protocol, and Session call associated "register()" 
functions (i.e. Command subclasses call Cmds::registerCommand(), Protocol 
subclasses call Protocols::registerProtocol(), Message subclasses call 
Messages::registerMessage()). The arguments to these functions are a 
Constructor function pointer, a string identifying the Class name, and an integer 
identifying the Class. These methods inject the constructor function pointer and 
the class name into a map; then when the app needs to construct one of the 
subclasses, it calls an associated "newInstance()" function to initialize the new 
class (i.e. Cmds::newInstance(string className) or Protocols::newInstance(string 
className)).  

Context: You have multiple subclasses that the system needs to be aware of.  

Problem: How do you keep track of the diverse subclasses when you need to 
know which actual instance-type to instantiate?  

Solution: Keep a map of all available subclasses. At runtime, have each subclass 
add itself to the map so that the application can be aware of it and use it as 
needed. 
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VI.   Conclusion 
RINSE is an outstanding example of a well architected software system. Through 
the use of architectural patterns and other quality attribute focused tactics, the 
development team made significant progress in furthering the areas of:  
 
1) Multiresolution traffic modeling 
2) Real-time interaction 
3) Efficient routing simulation 
4) High performance parallel simulation 
 
The success of RINSE and specifically the iSSFNet component can easily be 
attributed to the domain knowledge of the architects as well as expertise in object 
oriented design. This project is an excellent case study in software architecture 
done properly in a research organization. Future work is directed toward the 
quality attribute of fault tolerance as well as algorithmic improvements to 
scheduling. 

The software architecture documentation team is grateful for the support of the 
entire RINSE team. It is our hope that this document is useful to you, and 
specifically to your goal of teaching the system to network security experts who 
will extend the models currently in place. 

 
 

Russell Greenspan, New York, NY 
Joseph R. Laracy, Champaign, IL 

Adnan Zaman, Elizabeth, NJ 
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