

Real-time Immersive Network
Simulation Environment

(RINSE)

Russell Greenspan, Joseph R. Laracy, Adnan Zaman

University of Illinois at Urbana-Champaign,
Department of Computer Science

May, 2004

 2

I. INTRODUCTION.. 4

BACKGROUND .. 4
HIGH LEVEL SYSTEM DESCRIPTION.. 4

iSSFNet Network Simulator .. 5
Simulator Database Manager ... 5
Data Server ... 5
Network Viewer... 5

RELEVANT RESEARCH .. 6

II. ARCHITECTURAL BUSINESS CYCLE (ABC).. 7
STAKEHOLDERS.. 7
DEVELOPMENT ORGANIZATION.. 7
TECHNICAL ENVIRONMENT .. 8
ARCHITECTS EXPERIENCE .. 8

III. ARCHITECTURAL INFORMATION... 10
DISTRIBUTED DENIAL OF SERVICE ATTACK ... 10
IMPORTANT CLASSES ... 13

Net ... 13
Host ... 13
Interface .. 13
Link ... 14

MONITORING POSSIBILITIES ... 14
Cisco NetFlow Format.. 14
TCP Dump Format.. 14

DOMAIN MODELING LANGUAGE .. 14

IV. ARCHITECTURAL VIEWS ... 16
LOGICAL VIEW.. 16

Network-level Classes ... 16
Simulation-level classes .. 17

MODULE VIEW ... 19
SSF View ... 19
Layered View .. 20

COMPONENT/CONNECTOR VIEW... 21
Main View ... 21
Net View .. 22
Network Viewer/DataServer Connector View... 23

DEPLOYMENT VIEW ... 24
IMPLEMENTATION VIEW... 25

Attack .. 25
Auxiliary.. 26
Fluid.. 26
Interact.. 26
Net Folder ... 27
OS.. 27
sOSPF ... 27

V. QUALITY ATTRIBUTES ... 28
PERFORMANCE ... 28

Resource Demand ... 29
Resource Management.. 29
Resource Arbitration... 30
Traditional Patterns.. 30
Custom/Future Patterns .. 31

 3

FLEXIBILITY/EXTENSIBILITY .. 34
Traditional Patterns.. 35
Custom/Future Patterns .. 36

VI. CONCLUSION... 38

VII. BIBLIOGRAPHY.. 39

 4

I. Introduction

Background
The US Department of Homeland Security has commissioned the University of
Illinois to build a discrete event simulation system to simulate a terrorist cyber
attack on the nation’s critical infrastructure. Financial, power, and telecom
institutions, both public and private, will participate in a week long “war game”
to exercise their systems and command ability. One question that will be
answered by this system is how US banks will respond if they are cut off from
the Federal Reserve.

The high level goal of RINSE is to develop a large-scale real-time network
simulation system that is highly extensible. Because of the number of players and
duration of the game, hardware redundancy and other fault protection
techniques are employed.

A variety of novel techniques are employed in implementing RINSE. These
include multi-resolution traffic modeling, new routing simulation methods, and
a latency absorption technique.

High Level System Description
There are a variety of methodologies available for modeling computer networks,
ranging from analytic tools to hardware emulation to simulation. Simulation has
the advantage of offering scalability and flexibility. Obviously, in a security
scenario like cyber attacks, it is preferable to attack a simulated network rather
than a real one.

RINSE has a variety of capabilities. Some capabilities which are common to other
systems in this domain area are parallel execution, discrete event models, and
real-time support. RINSE is different from similar systems in its employment of
multi-resolution traffic models. These models facilitate human/machine real-time
interaction as well as increase efficiency for various attack schemes.

RINSE can be divided into five major modules:

1) iSSFNet network simulator
2) Simulator Database Manager
3) SQL Database

 5

4) Data Server
5) Network Viewer (clients)

iSSFNet Network Simulator
iSSFNet, formerly called DaSSFNet is a robust network simulator. It relies on the
common API for parallel simulation of networks, the Scalable Simulation
Framework (SSF). The iSSF kernel, which in many ways follows the standard
kernel pattern handles support functions and synchronization for iSSFNet.

A summary of important classes is provided in a later section.

iSSFNet currently runs on the NCSA cluster. These parallel machines allow large
networks to be simulated in real-time. Distributed execution is supported by a
composite synchronous/asynchronous conservative synchronization mechanism.

Simulator Database Manager
The database management system connects directly to each machine in the
simulator. It transmits data from iSSFNet to the SQL database as well as control
signals from the database to the simulator.

Data Server
Client applications such as Network Viewer interact with the simulation through
this component. The Data Server provides monitoring and control capabilities to
system administrators playing the game. It also supports authentication for
users, enables Network Viewer to access recent changes to the database via XML-
based remote procedure calls, and transmits DML information about client
networks.

Network Viewer
This Java based client application enables users to view their network during a
scenario. When Network Viewer polls the Data Server for data, the Data Server
reads the database and returns the requested information. "Super users" exist
which manage the game and view the client activity. They can use Network
Viewer in addition to their special tool set which enables them to inject surprises
into the game.

A command prompt is also provided in Network Viewer which supports five
types of commands.

 6

1. Attack - Super users initiate denial of service attacks with this command.
The DDoS scenario discussed later is an example.

2. Defense - System administrators may filter packets and employ other
techniques to protect their network.

3. Device Control - System administrators may reboot or disable network
devices such as routers.

4. Diagnostics - System administrators may assess their network health.

5. Simulator Data - Super users may control the simulator output or monitor
a specific element of the networks in the game.

Relevant Research
Much research has been conducted documenting the common themes and
architectural patterns within simulation modeling software. We used this
research as a foundation to know what to look for and what to expect in the
RINSE architecture.

As [4] explains, most of the patterns used are structure-oriented, allowing "the
ability and desire to create flexible and reusable classes" within the problem
space.

In [7] the authors explain that organizations often face the same problems when
designing their simulations. Because of this, static process models can function as
templates, later being molded into actual process descriptions. Architectural
patterns can help, such as "how to model or implement typical situations, e.g.
how to handle resources, defects, etc." To achieve reuse, the authors suggest
modularizing not only the code base, but also the models.

[5] describes an interesting distinction between "static" and "dynamic" model
elements. Static elements do not change as the simulation executes, while
dynamic elements have the potential to change. Dynamic input parameters are
received by the simulation at runtime from the sources involved in the
simulation.

 7

II. Architectural Business Cycle (ABC)

Architect(s)

Architecture
Module Structure
Component-Connector Structure
Deployment Structure
Implementation Structure

Architects Influences

Stakeholders
US Department of Homeland Security
University of Illinois Coordinate Science Laboratory
Dartmouth College Institute for Security
Technology Studies
CS 527 Architectural Documentation Team

Developing Organization
Coordinated Science Laboratory, UIUC

Technical Environment
Discrete event simulation
High performance computing
Networking
Security

Architect’s Experience
Academic
Industrial

Requirements
(Qualities)
Performance
Fault Tolerance
Security

System
RINSE

Stakeholders
RINSE is a continuation of projects funded by Defense Advanced Research
Projects Agency (DARPA) and the National Science Foundation (NSF). It is
currently sponsored by the US Department of Homeland Security.

The principal development organization is the University of Illinois Coordinate
Science Laboratory. The Dartmouth College Institute for Security Technology
Studies is also contributing.

The CS 527 Architectural Documentation Team is a stakeholder as well.

Development Organization
The Coordinated Science Laboratory (CSL) team is led by Professor David Nicol.
Dr. Nicol holds the following appointments at the University:

• Professor, Department of Electrical and Computer Engineering

• Affiliate Professor, Department of Computer Science

 8

• Research Professor, Coordinated Science Laboratory

• Chair of the Computer Engineering Group, ECE department

His research interests lie in the following areas:

• High Performance Computing

• Modeling and Simulation of Large-Scale Systems

• Networks

• Cyber-security

Professor Nicol is assisted by Dr. Michael Liljenstam, Post-Doctoral Research
Associate in the Center for Reliable and High-Performance Computing. Dr
Liljenstam's areas of expertise are multi-resolution network modeling and
simulation, cybersecurity: modeling internet worms, and inter-domain routing
analysis.

Dr. Jason (Xiaowen) Liu, Assistant Professor at the Colorado School of Mines,
authored the iSSF kernel while a UIUC graduate student. Graduate student
Yougu Yuan architected the framework of iSSFNet based on his experience on
other SSF implementations, including the precursor DaSSFNet. His focus was on
making it more extensible to enable large-scale network simulation. Graduate
student Chris Grier, a security expert, is assisting with the development of the
client side (JAVA) software. Research Programmer Lara Karbiner, a new member
of the team, came onboard to help regulate the development and testing.

Technical Environment
The RINSE development team is comprised of experts in the area of discrete
event simulation. Additionally, the UIUC team enjoys expertise in high
performance computing, networking, security, and wireless systems. The
Dartmouth ISTS group has expertise in security. They are developing the models
and scenarios for various attacks.

Architects Experience
Professor Nicol's experience:

• 1975-1979 Carleton College , BA (math)

• 1979-1982 Control Data Corporation, programmer/analyst

• 1982-1985 Univ. of Virginia, MS, PhD (computer science)

 9

• 1985-1987 ICASE, Staff Scientist

• 1987-1996 William and Mary, Assoc. Professor of CS

• 1996-2003 Dartmouth, Professor of CS and Chair

• 2002-2003 Assoc. Director ISTS

• 2003-2003 Director ISTS

• 2003-present UIUC, Professor of ECE

Professor Nicol's vast experience in network simulation provides the "grand
vision" for RINSE. He is assisted in this regard by Dr. Liljenstam, an expert in
multi-resolution network modeling and simulation, cybersecurity: modeling
internet worms, and interdomain routing analysis. Mr. Yuan architected RINSE
based on his experience with earlier SSFNet systems. He started out developing
some packages of the Java SSFNet. While working on a related project, two other
students began developing a C++ implementation of SSFNet. The C++
implementation grew in size and complexity and eventually became DaSSFNet.
However, the DaSSFNet APIs lacked extensibility for the new features they
hoped to include. As a result, iSSFNet was built from scratch using the lessons
learned from DaSSFNet and other past experiences.

 10

III. Architectural Information

Distributed Denial of Service Attack
The following informal use case is intended to give an engineer trying to learn
the RINSE system an understanding of the important classes and their
interaction in a particular scenario corresponding to a well known problem.

DDoS, or a distributed denial of service attack is a growing problem for large
scale networks, including the internet. In a DDoS attack, the attacker seeks to
disable a server victim through the exploitation of a computer network. First, the
attacker identifies a vulnerable server which becomes its agent. An example of an
agent could be an instant messaging server that has the IP addresses of a large
number of machines and can easily pass packets to these machines. The attack
occurs when the attacker signals the agent to command all its connected machines,
or zombies, to bombard the server victim with junk traffic. The volume of traffic is
so large that the server victim can no longer provide its services, whether it is
POP3 email services or B2B e-commerce.

 11

DDoS is one of the many scenarios that RINSE hopes to educated system
administrators about and prepare their networks against. The following
command starts the simulation:

ddos_attack attacker server 100 2000

ddos_attack – the command
attacker – the attacker mentioned above
server – the server victim mentioned above
100 – duration of attack in seconds
2000 – rate of bombardment in kilobits/second

The simulation begins when the client sends the command (DDosCmd) and it
makes its way to the simulator. It goes through the following classes:

ViewerClient DataServer DBMonitor WebServer

Finally, the command reaches the CmdProxy class and is broadcast to all the
physical simulators. There is one Country class associated with each physical
simulator. Each Country contains a ResolutionService class which tells the
CmdProxy the location of the attacker, or it’s Province. Every Country is made
up of a connected graph of Province objects.

CmdProxy Province

ResolutionService

The command is then passed to CmdHandler which communicates with the
AuxiliaryOracle and receives a pointer to the attacker within the attacker
Province. The Host contains at least one NIC and a protocol graph. The protocol
graph contains ProtocolSessions. The ProtocolSession class represents a protocol
layer on the ISO/OSI protocol stack. It's the base class for Protocol
implementations. The class specifies default mechanisms for how a protocol
session should behave. The data path is specified by two methods, push and pop,
for receiving data from the protocol session above and below. The data
exchanged between protocol layers are encapsulated in a ProtocolMessage object.

 12

The exchange of control messages between adjacent protocol layers is
implemented through invocations to the control method. Subclasses may
override these methods with specific behavior. ProtocolSessions include DDoS,
TCP, ICMP, IP, and others.

Packets are then generated with the following format and sent to the zombies.

The zombies then assault the server victim with the DDoS payload.

While the game is running, clients will periodically poll the database to analyze
how their network is performing. Each Province has a ReportManager which
reports relevant statistics such as bandwidth usage and processor utilization.
Although most information is polled periodically, some major events will alert
the client through an event-driven interrupt. Because of the enormous amount of

 13

data that will be collected after a week long war game with hundreds of clients,
the database cannot store all the information that should be analyzed in the post
game stage. Therefore, a large log file will be created to report the results.

Important Classes

Net
The Net class loads the configuration and instantiates the entire model . It reads
in the parameters from the passed-in DML branch and configures the hosts,
routers, and links. After the configuration, it then goes through the links and
connects all the interfaces. Links for subnets are also connected at this point.
Once the configuration is finished, it then initializes the traffic, nets, links, hosts
and router objects.

Host
The Host class is derived from the ProtocolGraph class and includes support for
the IP layer and Network Interface Card (NIC) . It instantiates its own timer
object that is used at the time of rebooting. In order to register itself, the Host
object gets a pointer to the AuxiliaryOracle object via the Province object. It then
configures the resources of CPU and memory. For example, it configures the
number of instructions that a CPU would need for handling a packet. After
configuring the resources, it then configures the protocol sessions and interfaces.

Interface
The Interface class implements the default mac layer. It registers itself with the
host-entity and initializes all the protocol sessions. As part of its initialization of
the given protocol session, it finds out the class name for this protocol session,
creates a new protocol session object, makes it part of the protocol graph, and
puts the protocol object in its vector. In case there are no protocol sessions
specified for an interface, it would then use the default protocol sessions at both
MAC and Physical layer.

 14

Link
The Link class is responsible for resolving the NHI addresses and connecting the
NIC to other NICs on the same link This connection is performed before the
actual IP addresses have been assigned to the interfaces.

Monitoring Possibilities

Cisco NetFlow Format
NetFlow data enables extensive near real time network monitoring capabilities.
Flow-based analysis techniques may be utilized to visualize traffic patterns
associated with individual routers and switches as well as on a network-wide
basis (providing aggregate traffic or application based views) to provide
proactive problem detection, efficient troubleshooting, and rapid problem
resolution.

TCP Dump Format
It provides support for dumps of packet data in tcpdump format. The
Instrumentation class is used to monitor the internal state of one TCP session at
one end of the connection and to write data to a dumpfile.

Domain Modeling Language
DML is a language used to describe networks to be simulated in RINSE.
Networks are described as combinations (layers) of other networks or as a
collection of devices such as routers, switches, hosts, etc. Network administrators
can describe their network topology using this language and submit the DML to
the RINSE team for integration into the game. Time permitting, the team may be
developing a GUI tool which generates DML code.

DML is similar to XML in that it has a simple syntax consisting of nested name-
value pairs. In addition, DML has features that allow nodes within the hierarchy
to act as pointers to other nodes in the hierarchy. For example, using the
keyword "_extends", many nodes can point to one common node.

To construct a Network in RINSE, DML is used as follows:
#======================
Network model

 15

#======================
Net [
 # support interaction
 support_interaction true

 # for pseudo dns
 dns_entry [name alpha.aaa.com nhi 2]
 dns_entry [name beta.ccc.edu nhi 0:0]

 # subnet 0
 Net [
 id 0
 _extends .dict.basicNet # use the entry in the dictionary
]

 # hosts in this level of Net
 host [
 id 2
 # get the graph data from the dictionary section
 graph [_extends .dict.host_graph]
 interface [id 0 _extends .dict.iface]
]

 # links in this level of Net
 link [attach 2(0) attach 0:0(0) delay 0.2]
]

For more information on DML, visit:
http://www.ssfnet.org/SSFdocs/dmlReference.html

 16

IV. Architectural Views
As Bass, et. all, explain, views are probably the best way to convey a software’s
architecture. Views capture a structure, and “documenting an architecture is a
matter of documenting the relevant views.” [9] In essence, through graphical and
annotative descriptions, views provide cross-sections into the fundamentals of
the software’s architecture.

Logical view

NETWORK-LEVEL CLASSES
iSSFNet tries to only leak minimum of simulation details and present the normal
users basic units to build a network. The following classes should be
conceptually familiar to most network researchers:

Net
This class represents a network. It is composed of some smaller nets (subnets),
hosts/routers, and links.

Host

http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/vhost.gif

Both hosts and routers are represented by this class. Each host is a ProtocolGraph
with one or more Interfaces.

Protocol Graph
Each protocol graph is composed of several ProtocolSessions such as IP, ICMP,
etc.

 17

Interface
This is the representation of a network interface card. It contains MAC layer and
physical layer protocol sessions.

ProtocolSession
Each protocol session is a model of one particular protocol, e.g. TCP, IP, ICMP,
etc.

Link
This represents a physical link that connects multiple network interface cards.

ProtocolMessage
Each protocol implements its own protocol header. It should be an extension of
this base class.

Packet
This is the smallest data unit that is sent over a link. Usually it is composed by
several ProtocolMessages, just the same as in the real life.

SIMULATION-LEVEL CLASSES

http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/infrastructure.gif

As a simulator, classes other than the network-level ones are needed to glue
them together and provide essential simulated environment information. The
main classes that accomplish this task are as follows:

 18

Country
This is literally the main controller of the simulation. It instantiates HostEntities
for each physical machine that runs the simulation, instantiates
ResolutionService that resolves global information such as NHI to ip address
mapping.

Province

http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/province.gif

Province is a container of hosts/routers. In iSSFNet design, it is equivalent to
timeline or alignment if the users are more familiar with the other terms. Each
simulation may has one or more Province instances. Each of them runs in its own
timeline, which means in any given moment, the simulated clock in different
HostEntities won't necessarily be the same. A Province sits in the background
and provides services such as current (simulated) time to the hosts inside, it also
provides means to distribute packets to hosts/routers in the other Province
instances. Moreover, it processes/distributes external user command received by
the CmdProxy to allow user interactions with a host, an interface, or a protocol
session in the simulator.

ResolutionService
Hosts or routers or a protocol session sometime needs to know some information
that is only available globally. For example, an interface may wants to get its own
MAC/IP address assigned given its NHI address, the user may want to know
which Province contains a specific host, given the host name, etc. such

 19

information is provided by the resolution service. In many cases, a host may
query such information indirectly using the AuxiliaryOracle.

AuxiliaryOracle
Each Province has its own AuxiliaryOracle. It can forward the queries on global
information to the ResolutionService, and it also provides local detail
information within this Province. For example, given a host NHI address, it can
return the host pointer. The local information can only be obtained by hosts or
other objects within this Province.

CmdProxy
It opens sockets and process user commands, distribute the commands to the
appropriate Province, which further distribute the commands to Host, then to
Interface or ProtocolSession. The results of the commands go back using a similar
path and are sent out by the CmdProxy. With some change in the MACRO
(remove -DUSE_CMD_SOCKET in the Makefile), it should be able receive input
from the keyboard instead of the socket.

Module View

SSF VIEW

Entity

 20

Entity serves as the base class for all simulation components – such as hosts,
routers, links, and TCP sessions. It provides a container mechanism for defining
alignment relations among a model's pieces. All such co-aligned entities interact
through event exchange on channels which is taken into account by the
underlying simulator at the time of mapping these entities to the corresponding
processors.

Event

Event is the base class for the quantum of information flowing over channels –
such as the protocol packets and timers.

Process

Process is the base class for describing an entity's behavior – such as the run-time
behavior of protocols. Each instance of a process is associated with an entity. This
instance may wait for input arriving on inchannels or wait for time to elapse. In
addition, it may also wait on channels of entities co-aligned with its owner.

inChannel, outChannel

These classes serve as the communication endpoints for event exchange – such as
the protocol interaction. Each instance of these classes belongs to a specific entity.
They provide multicase in-out and bus-style channel mappings. However, the
outchannels have a transmission delay associated with them.

LAYERED VIEW

The DML layer is responsible for the network configuration. It is a framework in
itself that understands the configuration file semantics and its structure. Thus, it

 21

essentially acts as a data source for the network models to be simulated. In a
network environment, only the central server needs to host this configuration
file. All the clients simply then retrieve their network model data from this one
location.

The SSFNet layer serves as the core layer that knows what objects to instantiate
at what point based on the data from the above-mentioned DML layer. It is
responsible for the simulation of domain internetworking that is accomplished
via the important classes mentioned later in this document.

The SSF layer resides at the bottom of this layered architecture providing a
generic simulation framework that is applicable for almost all sorts of simulation.
It provides some fundamental objects from which specific simulations (such as
ISSF Net itself) need to derive classes to implement their corresponding
functionalities.

Component/Connector view

MAIN VIEW
The following sequence diagram shows the interaction of objects at the time the
main method gets called during the load up of ISSF Net. At the time of startup,
data is retrieved via the dmlConfig object. From this point on, the core objects of
Country and Net use this pointer back to this dml configuration file to instantiate
themselves and their corresponding objects:

 22

NET VIEW
The Net object is solely responsible for loading the whole network model and the
associated objects as depicted below. This loading requires the creation of the
necessary network-support objects of routers, interfaces, and links:

 23

NETWORK VIEWER/DATASERVER CONNECTOR VIEW

The DataServer calls StartListening() and StartDBMonitoring() during
initialization. At this point, the DataServer is ready for Clients to connect. Clients
then call StartListening() to begin listening for messages from the server, then
attach themselves to the DataServer via AttachClient(). The Dataserver keeps
track of all connected Clients, and as needed calls UpdateClient() on each Client
via RPC, passing whatever data needs to be sent.

 24

Deployment View

 25

Within the iSSFNet Simulator Node (lower level):

Implementation View
This view provides information about the structure and contents of important
source code folders.

ATTACK
All the classes for the simulation of the DDoS attack scenario reside in this folder:

 26

The DDoSSession class is the core class that is responsible for initialization and
configuration of the protocol session. It sets up the simulation timer and sets up
protocol message and command objects.

The DDoSMessage and DDoSCmd classes work with the DDoSSession class to
communicate the commands for attack and report.

AUXILIARY
This folder contains the core classes of country, default auxiliary oracle, and
resolution service:

The Country class instantiates the province, resolution service and command
proxy objects. It is also responsible for performing the pre and post configuration
tasks.

The DefaultAuxOracle class registers all the hosts and interfaces. It also sets up
the in and out channels via which all the communication for a province occurs.

FLUID
This folder contains classes for handling fluid traffic at different network layers
of IP and MAC. The FluidHdrMessage object specifies a basic implementation of
fluid transport protocol message whereas the FluidAgentInPHY object defines a
module at the physical layer to handle fluid related stuff. Similarly, the
FluidAgentInMAC object handles the fluid traffic at the MAC layer. The
FluidAgentInFilter object is responsible for processing an incoming packet. In
case, it is a fluid dataflow event, its resource utilization would need to be taken
care of as well to get around the fluid traffic loss. This would happen in case of
CPU resource contention where the submission rate for packets to the upper
layers would be shrinked.

INTERACT
This folder contains various kinds of classes responsible for handling different
kinds of commands - such as ping, ftp, shutdown, report and so on so forth. The
CmdProxy object makes sure that all the in and out channels have been
established. All the tasks of reading and writing a command message get
handled in this object. The CmdHandler object deals with the province and
auxiliary oracle to process the event queue containing command messages.

 27

NET FOLDER
This folder contains the core SSFNet classes for modeling and simulation of
network elements of hosts, routers, network interfaces, and links. The
configuration of arbitrarily complex network topologies is also performed by the
classes residing in this folder. For example, one of the crucial task of this
configuration involves the generation of traffic. In order to do this, the
framework utilizes the statistical algorithms for internet traffic - such as the
poisson and poisson pareto burst process algorithms.

OS
This folder contains the core SSFNet classes for modeling and simulation of
network protocols, protocol messages, and operating system components. The
Dijkstra class contains the implementation of the Dijkstra's famous shortest path
algorithm. Support for internet class addresses has been provided via the
Internet_Protocol class that implements the basic functionality of the IPV4
addressing scheme. The protocol of policy aware on demand routing has been
utilized by the PAO_Routing class that helps the routers in deciding how to
route the network traffic.

SOSPF
Provides classes which together implement a model of the Open Shortest Path
First version 2 protocol (limited static version). The Open Shortest Path First
(OSPF) protocol is an IP link-state routing protocol, recommended for
distributing routing information among the routers in a single autonomous
system (AS), with explicit support for classless inter-domain routing (CIDR)
address allocation.

 28

V. Quality Attributes

Performance

Performance is one of the most important quality attributes in the RINSE
application. As stated earlier, previous SSF simulators existed with many of the
same features as iSSFNet. However, these versions could not provide the
performance necessary to simulate hundreds of large scale networks for many
days. The RINSE team utilized a variety of architectural patterns and other novel
tactics to achieve high performance.

Bass, et. all, suggest that "the goal of performance tactics is to generate a response
to an event arriving at the system within some time constraint." [9] This
definition is very applicable to the iSSFNet system, a real time discrete event
simulator. When events occur, they either execute normally or are delayed and
latency is adversely effected. The intelligent use of hardware and software
resources seeks to increase the amount of time in which events can be handled
normally and minimize "blocked time." Resource availability hindered by failure
or contention for resources can be fatal problems when many events hit a
particular resource near simultaneously.

The aforementioned problems can be dealt with looking at solutions in three
categories: Resource Demand, Resource Arbitration, and Resource Management.

 29

RESOURCE DEMAND
The RINSE architecture regulates event frequency as well as the resource
consumption of individual events. This is accomplished through the use of
algorithms and data structures which support computational efficiency.
Additionally, an effort is made to reduce computational overhead through
asynchronous parallel processing. Obviously, execution times and queue sizes
are well bounded to prevent overruns.

Simulating the mechanics of network traffic routing is a non-trivial activity.
Brute force implementations of routing information with n nodes requires O(n^2)
of memory. RINSE uses a novel hierarchical addressing scheme (BGP) which
only stores IP prefixes. This policy based routing model permits on demand
computation of routes. With the use of route aggregation, preloaded, pre-
computed forwarding tables can compute routes for background traffic and
other flows as required.

RESOURCE MANAGEMENT
Resource Management can be achieved by introducing concurrency, maintaining
multiple copies of data, and increasing available resources. RINSE uses all of
these techniques to manage resources. "Maintaining multiple copies of data is
implemented" to defend against a cyber attack against the war. In the event that
a hacker disables all or part of the RINSE network, a backup network at another
location will receive the current state of the mainline system and continue the
game. Increasing resources and concurrency are linked tactics. RINSE achieves
them by employing high performance RISC processors with large distributed
memories in the NCSA super computing cluster. Currently, the simulator runs
on a cluster with over 1000 processors.

RINSE has also overcome some serious parallelization challenges. Normally, a
global clock object would exist to synchronize the various machines working in
parallel. Currently, RINSE runs on approximately 1500 processors! If a processor
finishes its designated operation before other collaborating processors, it must
wait. This is clearly inefficient and undesirable. RINSE has successfully
implemented a scheme which involves local timers which run subsystems
asynchronously. If this were done "brute force," it would be much harder,
perhaps impossible, to implement clever algorithms that simplify matrix math
for example. However, the RINSE team has successfully implemented their
asynchronous system. The details of the implementation are beyond the scope of
this documentation and likely not relevant to the reader.

 30

RESOURCE ARBITRATION
Scheduling is the result of conflicts over system resources. The architecture of
RINSE employs a variety of scheduling strategies to efficiently share resources.
First, FIFO queues are used throughout the system, notably in the model for
network interface cards. FIFO queues have the advantage of handling all
resource request equally, scheduling events in order. Also, when there are
multiple priority queues, such as within one single queue, a FIFO policy is used.

Fixed priority scheduling is also utilized in RINSE. For example, when the
SSFNet kernel is handling an interaction or emulation task, current events are
constrained by deadlines. In the situation handling incoming events, some
events need to be processed and incorporated into the simulation immediately.
Current work focuses on expanding the kernel to permit differentiation between
lower priority tasks, such as background traffic computation, and higher priority
tasks. Deadline monatomic strategies are also used in situations such as in
emulation mode. When a “real” packet is converted to a “virtual” packet, a
deadline time is imposed for delivery. Upon arrival at the simulated network
card, the FIFO strategy can be violated to allow the packet to take its place in the
queue such that its deadline is not compromised.

TRADITIONAL PATTERNS

Layers Pattern
The Layers pattern describes the situation where logical decompisitions each
perform a subset of the total work, continuously passing responsibility down the
chain until the operation is completed. [2] This pattern provides many benefits,
including keeping dependencies local to the individual layers, and this can be
seen within the RINSE architecture.

RINSE employs a series of ProtocolSession layers, each representing a protocol
layer in the ISO/OSI protocol stack. When a ProtocolMessage is created, each
ProtocolSession performs whatever work it needs to, then calls
ProtocolSession::push(msg) to push the message down to the ProtocolSession in
the next layer. When the message reaches the bottom and all work is performed,
each ProtocolSession can call ProtocolSession::pop(msg) to alert the
ProtocolSession in the layer above that the message has been processed by the
lower layer and should be bubbled back up.

Proxy Pattern

 31

The intent of the proxy pattern is to “provide a surrogate or placeholder for another
object to control access to it." [3]

from the DaSSF User’s Manual

The RINSE applies the solution found in the Proxy Pattern through the use of
distributed memory. Large multiprocessor architectures cannot be implemented
with the traditional single bus design. Bandwidth constraints limit the number
of connected processors. In a distributed memory configuration, each processor
has its own cache which has its own associated memory. However, the
memories are connected through a network.

CUSTOM/FUTURE PATTERNS
By definition, a software design pattern is a time tested solution to a recurring
design problem. As a result of the research which developed iSSFNet, a variety
of new solutions to recurring problems in the network simulation domain have
been developed. Strictly speaking, these are not patterns yet because they have
not had time to gain industrial approval. However, these "patterns" are
documented here in the spirit of sharing the knowledge.

Continuations Pattern
Summary: The Continuations Pattern is a new pattern developed to provide an
efficient way to save state information and reduce latency in network simulation.

Context: You are developing a discrete event simulation.

Problem: How do you model a delay in the system and advance simulation time
without losing state information?

 32

Background:

Suppose you have a graph of your network topology. The network is composed
of devices with well defined interfaces. At time X in the simulation, a packet is
injected into the network. At any point in time, it occupies a specific position in
the graph. Now the simulation time must advanced to time X + delta T to
accommodate another event, perhaps an additional packet. However, if nothing
is done, the current packet and the network state that was affected by it will be
lost.

Solution: The solution to this problem is to define a continuation object. The
purpose of this object is to store state information. Many times, the continuation
object can just save a copy of the packet. One should also define a Timer object
contains a member variable which specifies how long of a delay should be
modeled and encapsulates the continuation object.

Multiresolution Modeling Pattern
Summary: The Multiresolution Modeling Pattern is the principle technique
which allows real time simulation of large possible. The fundamental concept is
to be able to simulate network activity at different levels of detail depending on
the particular needs of the particular scenario. This enables execution time to be
reduced by two orders of magnitude.

Context: (a) You are developing a discrete event simulation, or (b) You want to
model a variety of different situations, each requiring a different level of
granularity.

Problem: How much should the process being simulated be discretized? Large
granularity is useless for some scenarios, while fine granularity is unnecessary
for others and computationally expensive.

 33

Background: Suppose you are developing a simulator of computer networks.
Depending on the type of attack or defense that a simulating network is exposed
to, different resolutions of traffic modeling may be necessary. These vary from
tracking at the individual packet level to observing aggregate flows between sub-
networks.

Solution: The solution to this problem is to adjust the level of detail with which
traffic is simulated:

"Traffic that is 'in focus,' what we call foreground traffic is simulated
with high fidelity at packet level detail. Traffic that represents 'other
things' going on in the network, i.e. background traffic, is abstracted
using fluid modeling, either fine grained per-flow models, or coarse
time-scale periodic fixed point solutions.

Fluid modeling of network traffic is a technique with some history,
and is being explored also in other network simulators, such as
MAYA, IP-TN, and HDCF-NS/pdns. The models used in iSSFNet are
based on our previous work to develop discrete-event fluid modeling
of TCP and hybrid traffic interaction models such that the packet and
fluid representations can coexist in the same simulation." [10]

Multiresolution traffic modeling provides for speedups two orders of magnitude.
This speedup facilitates the simulation of very large networks.

Intuitively, the multiresolution configuration can be viewed like this:

Level 1: Model individual packets - Discrete
Level 2: Raise level of abstraction and look at traffic as a fluid - Continuous
Level 3: Raise the level of abstraction again and look at aggregate communication
between sub-networks.

Each level reveals different information about the network under evaluation.

 34

Flexibility/Extensibility

RINSE was designed with flexibility, extensibility, and scalability in mind. The
architecture needed to be intellectually accessible for new developers so that it
could be improved in a straightforward manner. It also needed to be able to scale
to run on large hardware platforms, such as over 1000 clustered high
performance machines.

In addition to the implementation of patterns, other techniques were employed
to achieve this quality attribute. First, the APIs were redesigned from DaSSFNet
to be friendlier to new developers. Imposing additional structure does create
more overhead, but the benefits outweigh the small performance hit. Other
changes improved performance though, such as reducing the number of SSF
channels. There is also additional support for emulation. Real time interaction is
facilitated by enabling interaction with the outside world. Despite all these
changes from the earlier SSF application, iSSFNet maintains backwards
compatibility with old DML network models still work.

Bass, et. all, describe general tactics for modifiability. RINSE utilizes the
"maintain semantic coherence," anticipate expected changes," and "limit possible
options" tactics to achieve modifiability. "Semantic coherence refers to the
relationships among responsibilities in a module....The tactic of anticipating
expected changes does not concern itself with coherence of a modules
responsibilities but rather minimizes the effects of the changes." [9] In many
ways, the SSF class of systems can be seen as a product line architecture.
"Modifications, especially within a product line, may be far ranging and hence
affect many modules. Restricting the possible options will reduce the effect of
these modifications." [9]

 35

TRADITIONAL PATTERNS

Command Pattern
The GoF Command Pattern shows how to separate a request from its execution,
such that you "encapsulate a request as an object, thereby allowing you to
parameterize clients with different requests, queue or log requests, and support
undoable operations." [3] RINSE uses this approach to implement the commands
which clients input with the Network Viewer client and send through the entire
RINSE architecture. See the DDoS scenario in Section III to see how a command
object flows through the system.

In SSFNet, a DDOSCommand object contains the parameters for a request (the
DDOS attack source and destination addresses and the number of seconds
between attacks), and the realization of these requests occurs as the simulator
creates DDOSMessages using the parameters specified in the DDOSCommand
object.

Strategy Pattern
The GoF strategy pattern's intent is to "define a family of algorithms, encapsulate
each one, and make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it." [3]

In the example illustrated above as well as in many other instances, subclasses
implement various strategies for a super class.

Templates Pattern
The intent of the Gang of Four (GoF) template pattern is to "define the skeleton of
an algorithm in an operation, deferring some steps to subclasses. Template
Method lets subclasses redefine certain steps of an algorithm without changing
the algorithm's structure." [3] This pattern is used in iSSFNet through the

 36

employment of the standard template library iterators. These iterators are used
for example to iterate over nodes of topology objects.

WholePart Pattern
The Whole-Part pattern explains how to separate units into aggregate
components [2], and the inherent aggregation of a network fits this perfectly. We
have the Net class, which represents a network, containing Hosts, which are
computers on the network, containing Interfaces, which represent the network
interfaces within a computer. Also note that the Net class can consist of child Net
classes (subnets), each with their own Hosts with their own Interfaces.

CUSTOM/FUTURE PATTERNS

Fractal Design Pattern
Note: This pattern gets its name from fractals found in mathematics because they
are defined by SELF SIMILARITY.

Summary: By structuring the simulation objects in a way similar to the real
world objects under investigation, domain experts can easily learn how the
simulation works and extend it if they wish.

Context: (a) You are developing a discrete event simulation, or (b) Other
software engineers who understand the class of systems that is being simulated
but not simulation techniques must modify or interact with your simulation.

Problem: How do you efficiently organize the simulation so the engineers
mentioned above can quickly learn the system?

Background: Suppose you are developing a simulator of computer networks.
You want computer network experts to interact with your system and develop
models to enhance it. The network experts know nothing about discrete event
simulation.

Solution: The solution to this problem is to structure your simulation software
similar to the structure of the system you are modeling. The classes in your
simulation should be named after the objects they are simulating. Therefore, if
you understand the internet and computer networks, you can understand the
network simulation software. This concept is an extension of the paradigm

 37

behind object oriented program which states that classes should be named after
the real world objects they control.

Subclass Creation Pattern

Summary: The RINSE designers have implemented an unusual process by which
subclasses such as Command, Protocol, and Session call associated "register()"
functions (i.e. Command subclasses call Cmds::registerCommand(), Protocol
subclasses call Protocols::registerProtocol(), Message subclasses call
Messages::registerMessage()). The arguments to these functions are a
Constructor function pointer, a string identifying the Class name, and an integer
identifying the Class. These methods inject the constructor function pointer and
the class name into a map; then when the app needs to construct one of the
subclasses, it calls an associated "newInstance()" function to initialize the new
class (i.e. Cmds::newInstance(string className) or Protocols::newInstance(string
className)).

Context: You have multiple subclasses that the system needs to be aware of.

Problem: How do you keep track of the diverse subclasses when you need to
know which actual instance-type to instantiate?

Solution: Keep a map of all available subclasses. At runtime, have each subclass
add itself to the map so that the application can be aware of it and use it as
needed.

 38

VI. Conclusion
RINSE is an outstanding example of a well architected software system. Through
the use of architectural patterns and other quality attribute focused tactics, the
development team made significant progress in furthering the areas of:

1) Multiresolution traffic modeling
2) Real-time interaction
3) Efficient routing simulation
4) High performance parallel simulation

The success of RINSE and specifically the iSSFNet component can easily be
attributed to the domain knowledge of the architects as well as expertise in object
oriented design. This project is an excellent case study in software architecture
done properly in a research organization. Future work is directed toward the
quality attribute of fault tolerance as well as algorithmic improvements to
scheduling.

The software architecture documentation team is grateful for the support of the
entire RINSE team. It is our hope that this document is useful to you, and
specifically to your goal of teaching the system to network security experts who
will extend the models currently in place.

Russell Greenspan, New York, NY
Joseph R. Laracy, Champaign, IL

Adnan Zaman, Elizabeth, NJ

 39

VII. Bibliography
[1] N. Angkasaputra, D. Pfahl. "Making Software Process Simulation Modeling
Agile and Pattern-based". Institute for Experimental Software Engineering, 2003.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland and M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley and Sons, 1996.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley, 1997.

[4] P. Gustavson. "Applying Design Patterns for Enabling Simulation
Interoperability", http://www.sisostds.org/webletter/siso/iss_104/art_627.htm,
2004.

[5] U. Kline, T. Schulze. "Traffic simulation based on the high level architecture".
Proceedings of the 30th conference on Winter simulation, IEEE, 1998.

[6] T. Lechler. "DESMO-J : An Object Oriented Discrete Simulation Framework in
Java". University of Hamburg, 1999.

[7] H. Neu, I. Rus. "Reuse in Software Process Simulation Modeling". Fraunhofer
Institute for Experimental Software Engineering, 2002.

[8] H. Sarjoughian, R. Singh. "Building Simulation Modeling Environments
Using Systems Theory and Software Architecture Principles". Arizona State
University, 2003.

[9] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice, Second
Edition. Addison Wesley, 2003.

[10] D. Nicol, et. al. “RINSE: the Real-time Interactive Network Simulation
Environment for Network Security Exercises.” 2004.

